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The stereoselective setup of adjacent chiral centers in acyclic
molecules is a challenging problénierein, we wish to report a
new approach allowing the regio and stereoselective control of
up to three chiral centers using a new stereoselective migration
of organoboranes. In the case of organoboranes derived from
disubstituted olefins by hydroboration, the thermal isomerization
is known to proceed at elevated temperature 080 °C).23
However, in the case of cycli€ and acycli€ tetrasubstituted
olefins the resulting organoboranes undergo a thermal migration
under far milder conditions (58C). For acyclic tetrasubstituted
olefins with methyl groups, stereoselective migrations were
observed. Remote G-H activation leading to boracycles (five-
and six-membered rings) has also been shown to occur with high
stereoselectivity.

We have now found that this rearrangement allows a new
preparation of more elaborated acyclic molecules with control
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The reaction also shows a very high regioselectivity. The

of the relative stereochemistry of up to three adjacent centers asUnsymmetrical olefin 1,1-diphenyl-2-methyl-1-butér(8) pro-

well as an excellent regioselectivity of the rearrangement. The
migration toward higher alkyl substituents is much faster than
that toward methyl groups. If the alkyl substituent is bearing
diastereotopic hydrogen atoms, the migration will show high
diastereoselectivity. Thus, the hydroboration of tetrasubstituted
olefins of typel affords first the hydroboration produ2twhich

vides after hydroboration and thermal rearrangement(5@ h)
only the rearrangement product®a and 10b where the boron
migration has proceeded only in the direction of the ethyl gfdup.
This regioselectivity can again be explained by the higher stability
of the intermediate olefinborane completlacompared td1b
and1lc(Scheme 3). In this reaction also only one diastereoiso-

undergoes a highly stereoselective thermal rearrangement at 5@N€ric organoborang? is formed. Subsequently, after oxidation

°C to 60°C leading to diastereom&a and not3b (Scheme 1).
The hydroboration of 1,3-diphenyl-2-ethyl-1-butedg’ with
BH; - THF furnishes after heating at 5 for 4 h and subse-
quent oxidation with HO,/NaOH the alcohoba as only one
diastereoisomein 87% isolated yield. The allylation of the
intermediate organoboraéd(i) i-Pr.Zn, THF, room temperature;
(ii) CuCN - 2 LiCl (20 mol %),—78 °C, allyl bromide] gives the
diastereomerically pure produsb (Scheme 2¥. This stereo-
selectivity can be best explained by assuming that the primary
hydroboration product undergoes a preferential dehydroboration
with the adjacent Fi(and not H) resulting in the formation of
the most stable olefinborane comples having the methyl group
trans to the most bulky substituent of the double blthough
the dissociation oB has no stereochemical consequences, this
type of borane-olefin complexes is a key intermediate to explain
the stereoselectivity observed fbd and19 (Schemes 4 and 5).
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with H,O,/NaOH the diastereomerically pure alcohbd§ 87%)
is obtained. After amination [(i) BG| (i) BnN3] the benzylamine
10b (>99.9% one diastereoisomer, 83%) is isolated.

The thermal rearrangement of acyclic organoboranes allows
the preparation of diastereomerically defined molecules having
three adjacent stereocenters. Thus, the reactionZpf3,é-
diphenyl-3-hexenfe(13a) with BH3+ THF, thermal rearrange-
ment (65°C, 12 h) and subsequent allylation furnishes, via the
intermediate secondary organoborahg],'® the allylated product
15awith an excellent diastereoselectivity 97:3) in 53% yield,

showing that both the intermediate organozinc compound and

(9) Typical procedure for a transmetalation to the zinc organometallic

and allylation. To a solution of 2-ethyl-1,1-diphenyl-1-buter® (709 mg,

3.0 mmol) in THF (25 mL) at 25C was added BEHTHF (9 mL, 9 mmol,

1 M in THF). The resulting solution was stirred for 10 min at Z5and for

4 h at 50°C. After the solution was cooled to°C, the solvent and an excess
of borane were removed under vacuum (0.1 mmHg, 60 ntR)y,Zn (2.4

mL, 6 mmol, 2 equiv, 2.5 M in THF) was added at 26. After change of
color to dark gray (2 h), stirring was continued for 45 min. The excess of
i-Pr,Zn was removed under vacuum at®© and the residue was diluted with
THF (25 mL). The resulting mixture was cooled+@8 °C and a solution of
CuCN2 LiCI (0.4 mL, 0.2 equiy1 M in THF) was slowly added. Stirring

at —78 °C was continued for 15 min. Then allyl bromide (0.8 mL, 9 mmol,
3 equiv) was added. The reaction mixture was warmed téQ5stirred for

1 h, and quenched wit3 M aqueous HCI (25 mL). After typical workup, the
residue obtained after evaporation of the solvents was purified by flash
chromatography (pentane) affording R45S¥)-5-benzhydryl-4-methyl-1-
heptene §b) (516 mg, 62%) as a clear oil.
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organocopper reagent have a high configurational stabflBy dr.=1:1
starting with the corresponding)-3,4-diphenyl-3-hexenel8b), in 69% yield (d.r.= 96:4). It should be noticed that the initial
the intermediate organoboraféb is formed and after the same  hydroboration is not regioselective, but that a rapid isomerization
allylation procedure, the diastereomerically pure prodiiti is seems to occur between the two regioisomers under the reaction
obtained (Scheme 4). conditions. Only the product derived from regioisonis is

By hydroboration of the unsymmetricZtolefin” 16 a prefer- observed since migration to ethyl or higher alkyl groups has been

ential migration of the tertiary organoborane in compoui&d found to be substantially faster.

toward the ethyl group is observed. The resulting secondary A diastereoselective multiple migration has been observed in

organoboranel9'® is converted to the diastereomerically pure the case of 1,1-diphenyl-2,3-dimethyl-1-buteB6) ( After oxida-

amine 17a after the usual amination procedure in 79% yield. tive workup of the organoborari (H,O,/NaOH) the diastereo-

Similarly, the treatment of the organoborah® with i-Pr,Zn merically pure alcohol22 was isolated® However, for 1,1-

followed by CuCN- 2 LiCl and 1-bromohexyne provides the diphenyl-2,4-dimethyl-1-penteng23) the migration led to the

alkynel7bin 66% yield as one diastereoisomer (Scheme 5). By intermediate organobora2d and after oxidative workup 3D,/

the analogous reaction with PhCOCI, the ketdiieis obtained NaOH) to the alcohol®5 as a 1:1 mixture of diastereoisomers
(12) Typical procedure for the amination. To a solution of 2-methyl- (Scheme 6). :

1,1-diphenyl-1-butenedj (667 mg, 3 mmol) in THF (25 mL) at 25C was _In summary, we have described that organoboranes undergo

added BH-THF (9.0 mL, 9 mmal 1 M in THF). The resulting solution was ~ highly regio- and stereoselective thermal migrations affording

stirred at 25°C for 10 min and at 50C for 4 h. After the solution was cooled acyc”c molecules with relative stereocontrol of three adjacents
to 0 °C, the solvent and the excess of borane were removed under vacuum

(0.1 mmHg, 60 min). The residue was dissolved in,CH (25 mL) and BC} carbon centers.
(12 mL, 4 mmo] 1 M in CH,Cl,) was added at €C. The mixture was warmed . . .
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